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Abstract
Variable and feature selection have become the focus of muchresearch in areas of application for
which datasets with tens or hundreds of thousands of variables are available. These areas include
text processing of internet documents, gene expression array analysis, and combinatorial chemistry.
The objective of variable selection is three-fold: improving the prediction performance of the pre-
dictors, providing faster and more cost-effective predictors, and providing a better understanding of
the underlying process that generated the data. The contributions of this special issue cover a wide
range of aspects of such problems: providing a better definition of the objective function, feature
construction, feature ranking, multivariate feature selection, efficient search methods, and feature
validity assessment methods.
Keywords: Variable selection, feature selection, space dimensionality reduction, pattern discov-
ery, filters, wrappers, clustering, information theory, support vector machines, model selection,
statistical testing, bioinformatics, computational biology, gene expression, microarray, genomics,
proteomics, QSAR, text classification, information retrieval.

1 Introduction

As of 1997, when a special issue on relevance including several papers on variable and feature
selection was published (Blum and Langley, 1997, Kohavi and John, 1997), few domains explored
used more than 40 features. The situation has changed considerably in thepast few years and, in
this special issue, most papers explore domains with hundreds to tens of thousands of variables or
features:1 New techniques are proposed to address these challenging tasks involving many irrelevant
and redundant variables and often comparably few training examples.

Two examples are typical of the new application domains and serve us as illustration throughout
this introduction. One is gene selection from microarray data and the other is text categorization.
In the gene selection problem, the variables are gene expression coefficients corresponding to the

1. We call “variable” the “raw” input variables and “features” variables constructed for the input variables. We use
without distinction the terms “variable” and “feature” when there is no impact on the selection algorithms, e.g., when
features resulting from a pre-processing of input variables are explicitly computed. The distinction is necessary in
the case of kernel methods for which features are not explicitly computed (see section 5.3).
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abundance of mRNA in a sample (e.g. tissue biopsy), for a number of patients. A typical clas-
sification task is to separate healthy patients from cancer patients, based ontheir gene expression
“profile”. Usually fewer than 100 examples (patients) are available altogether for training and test-
ing. But, the number of variables in the raw data ranges from 6000 to 60,000. Some initial filtering
usually brings the number of variables to a few thousand. Because the abundance of mRNA varies
by several orders of magnitude depending on the gene, the variables are usually standardized. In the
text classification problem, the documents are represented by a “bag-of-words”, that is a vector of
dimension the size of the vocabulary containing word frequency counts (proper normalization of the
variables also apply). Vocabularies of hundreds of thousands of words are common, but an initial
pruning of the most and least frequent words may reduce the effectivenumber of words to 15,000.
Large document collections of 5000 to 800,000 documents are available forresearch. Typical tasks
include the automatic sorting of URLs into a web directory and the detection of unsolicited email
(spam). For a list of publicly available datasets used in this issue, see Table 1at the end of the paper.

There are many potential benefits of variable and feature selection: facilitating data visualization
and data understanding, reducing the measurement and storage requirements, reducing training and
utilization times, defying the curse of dimensionality to improve prediction performance. Some
methods put more emphasis on one aspect than another, and this is another point of distinction
between this special issue and previous work. The papers in this issue focus mainly on constructing
and selectingsubsets of featuresthat areusefulto build a good predictor. This contrasts with the
problem of finding or ranking all potentially relevant variables. Selecting the most relevant variables
is usually suboptimal for building a predictor, particularly if the variables areredundant. Conversely,
a subset of useful variables may exclude many redundant, but relevant, variables. For a discussion
of relevancevs.usefulness and definitions of the various notions of relevance, see the review articles
of Kohavi and John (1997) and Blum and Langley (1997).

This introduction surveys the papers presented in this special issue. Thedepth of treatment of
various subjects reflects the proportion of papers covering them: the problem of supervised learning
is treated more extensively than that of unsupervised learning; classification problems serve more
often as illustration than regression problems, and only vectorial input datais considered. Complex-
ity is progressively introduced throughout the sections: The first section starts by describingfilters
that select variables by ranking them with correlation coefficients (Section2). Limitations of such
approaches are illustrated by a set of constructed examples (Section 3).Subset selection methods
are then introduced (Section 4). These includewrapper methodsthat assess subsets of variables ac-
cording to their usefulness to a given predictor. We show how some embedded methods implement
the same idea, but proceed more efficiently by directly optimizing a two-part objective function with
a goodness-of-fit term and a penalty for a large number of variables. We then turn to the problem of
feature construction, whose goals include increasing the predictor performance and building more
compact feature subsets (Section 5). All of the previous steps benefit from reliably assessing the
statistical significance of the relevance of features. We briefly review model selection methods and
statistical tests used to that effect (Section 6). Finally, we conclude the paper with a discussion sec-
tion in which we go over more advanced issues (Section 7). Because the organization of our paper
does not follow the work flow of building a machine learning application, we summarize the steps
that may be taken to solve a feature selection problem in a check list2:

2. We caution the reader that this check list is heuristic. The only recommendation that is almost surely valid is to try
the simplest things first.
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1. Do you have domain knowledge?If yes, construct a better set of “ad hoc” features.

2. Are your features commensurate?If no, consider normalizing them.

3. Do you suspect interdependence of features?If yes, expand your feature set by constructing
conjunctive features or products of features, as much as your computer resources allow you
(see example of use in Section 4.4).

4. Do you need to prune the input variables(e.g. for cost, speed or data understanding rea-
sons)? If no, construct disjunctive features or weighted sums of features (e.g. by clustering
or matrix factorization, see Section 5).

5. Do you need to assess features individually(e.g. to understand their influence on the system
or because their number is so large that you need to do a first filtering)? If yes, use a variable
ranking method (Section 2 and Section 7.2); else, do it anyway to get baseline results.

6. Do you need a predictor?If no, stop.

7. Do you suspect your data is “dirty” (has a few meaningless input patterns and/or noisy
outputs or wrong class labels)? If yes, detect the outlier examples using thetop ranking
variables obtained in step 5 as representation; check and/or discard them.

8. Do you know what to try first? If no, use a linear predictor.3 Use a forward selection method
(Section 4.2) with the “probe” method as a stopping criterion (Section 6) or use the`0-norm
embedded method (Section 4.3). For comparison, following the ranking of step 5, construct
a sequence of predictors of same nature using increasing subsets of features. Can you match
or improve performance with a smaller subset? If yes, try a non-linear predictor with that
subset.

9. Do you have new ideas, time, computational resources, and enough examples? If yes,
compare several feature selection methods, including your new idea, correlation coefficients,
backward selection and embedded methods (Section 4). Use linear and non-linear predictors.
Select the best approach with model selection (Section 6).

10. Do you want a stable solution(to improve performance and/or understanding)? If yes, sub-
sample your data and redo your analysis for several “bootstraps” (Section 7.1).

2 Variable Ranking

Many variable selection algorithms include variable ranking as a principal orauxiliary selection
mechanism because of its simplicity, scalability, and good empirical success. Several papers in this
issue use variable ranking as a baseline method (see, e.g., Bekkerman et al., 2003, Caruana and
de Sa, 2003, Forman, 2003, Weston et al., 2003). Variable ranking is not necessarily used to build
predictors. One of its common uses in the microarray analysis domain is to discover a set of drug
leads (see, e.g., et al., 1999): A ranking criterion is used to find genes that discriminate between
healthy and disease patients; such genes may code for “drugable” proteins, or proteins that may

3. By “linear predictor” we mean linear in the parameters. Feature construction may render the predictor non-linear in
the input variables.

1159



GUYON AND ELISSEEFF

themselves be used as drugs. Validating drug leads is a labor intensive problem in biology that is
outside of the scope of machine learning, so we focus here on building predictors. We consider in
this section ranking criteria defined for individual variables, independently of the context of others.
Correlation methods belong to that category. We also limit ourselves to supervised learning criteria.
We refer the reader to Section 7.2 for a discussion of other techniques.

2.1 Principle of the Method and Notations

Consider a set ofm examples{xk,yk} (k = 1, ...m) consisting ofn input variablesxk,i (i = 1, ...n)
and one output variableyk. Variable ranking makes use of a scoring functionS(i) computed from
the valuesxk,i andyk, k = 1, ...m. By convention, we assume that a high score is indicative of a
valuable variable and that we sort variables in decreasing order ofS(i). To use variable ranking to
build predictors, nested subsets incorporating progressively more andmore variables of decreasing
relevance are defined. We postpone until Section 6 the discussion of selecting an optimum subset
size.

Following the classification of Kohavi and John (1997), variable rankingis afilter method: it is
a preprocessing step, independent of the choice of the predictor. Still, under certain independence or
orthogonality assumptions, it may be optimal with respect to a given predictor.For instance, using
Fisher’s criterion4 to rank variables in a classification problem where the covariance matrix is diag-
onal is optimum for Fisher’s linear discriminant classifier (Duda et al., 2001). Even when variable
ranking is not optimal, it may be preferable to other variable subset selectionmethods because of
its computational and statistical scalability: Computationally, it is efficient since it requires only the
computation ofn scores and sorting the scores; Statistically, it is robust against overfittingbecause
it introduces bias but it may have considerably less variance (Hastie et al.,2001).5

We introduce some additional notation: If the input vectorx can be interpreted as the realization
of a random vector drawn from an underlying unknown distribution, we denote byXi the random
variable corresponding to theith component ofx. Similarly,Y will be the random variable of which
the outcomey is a realization. We further denote byxi the m dimensional vector containing all
the realizations of theith variable for the training examples, and byy the m dimensional vector
containing all the target values.

2.2 Correlation Criteria

Let us consider first the prediction of a continuous outcomey. The Pearson correlation coefficient
is defined as:

R (i) =
cov(Xi ,Y)

√

var(Xi)var(Y)
, (1)

wherecovdesignates the covariance andvar the variance. The estimate ofR(i) is given by:

R(i) =
∑m

k=1(xk,i − x̄i)(yk− ȳ)
√

∑m
k=1(xk,i − x̄i)2 ∑m

k=1(yk− ȳ)2
, (2)

4. The ratio of the between class variance to the within-class variance.
5. The similarity of variable ranking to the ORDERED-FS algorithm (Ng, 1998) indicates that its sample complexity

may be logarithmic in the number of irrelevant features, compared to a power law for “wrapper” subset selection
methods. This would mean that variable ranking can tolerate a number of irrelevant variables exponential in the
number of training examples.
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where the bar notation stands for an average over the indexk. This coefficient is also the cosine
between vectorsxi andy, after they have been centered (their mean subtracted). Although theR(i)
is derived fromR (i) it may be used without assuming that the input values are realizations of a
random variable.

In linear regression, the coefficient of determination, which is the squareof R(i), represents the
fraction of the total variance around the mean value ¯y that is explained by the linear relation between
xi andy. Therefore, usingR(i)2 as a variable ranking criterion enforces a ranking according to
goodness of linear fit of individual variables.6

The use ofR(i)2 can be extended to the case of two-class classification, for which each class
label is mapped to a given value ofy, e.g.,±1. R(i)2 can then be shown to be closely related to
Fisher’s criterion (Furey et al., 2000), to the T-test criterion, and othersimilar criteria (see, e.g.,
et al., 1999, Tusher et al., 2001, Hastie et al., 2001). As further developed in Section 6, the link
to the T-test shows that the scoreR(i) may be used as a test statistic to assess the significance of a
variable.

Correlation criteria such asR(i) can only detect linear dependencies between variable and tar-
get. A simple way of lifting this restriction is to make a non-linear fit of the target withsingle
variables and rank according to the goodness of fit. Because of the riskof overfitting, one can alter-
natively consider using non-linear preprocessing (e.g., squaring, taking the square root, the log, the
inverse, etc.) and then using a simple correlation coefficient. Correlation criteria are often used for
microarray data analysis, as illustrated in this issue by Weston et al. (2003).

2.3 Single Variable Classifiers

As already mentioned, usingR(i)2 as a ranking criterion forregressionenforces a ranking according
to goodness of linear fit of individual variables. One can extend to theclassificationcase the idea of
selecting variables according to their individual predictive power, usingas criterion the performance
of a classifier built with a single variable. For example, the value of the variable itself (or its negative,
to account for class polarity) can be used as discriminant function. A classifier is obtained by setting
a thresholdθ on the value of the variable (e.g., at the mid-point between the center of gravity of the
two classes).

The predictive power of the variable can be measured in terms of error rate. But, various other
criteria can be defined that involve false positive classification ratefpr and false negative classifi-
cation ratefnr. The tradeoff betweenfpr and fnr is monitored in our simple example by varying
the thresholdθ. ROC curves that plot “hit” rate(1-fpr) as a function of “false alarm” ratefnr are
instrumental in defining criteria such as: The “Break Even Point” (the hit rate for a threshold value
corresponding tofpr=fnr) and the “Area Under Curve” (the area under the ROC curve).

In the case where there is a large number of variables that separate the data perfectly, ranking
criteria based on classification success rate cannot distinguish between the top ranking variables.
One will then prefer to use a correlation coefficient or another statistic like the margin (the distance
between the examples of opposite classes that are closest to one another for a given variable).

6. A variant of this idea is to use the mean-squared-error, but, if the variables are not on comparable scales, a comparison
between mean-squared-errors is meaningless. Another variant is to useR(i) to rank variables, notR(i)2. Positively
correlated variables are then top ranked and negatively correlated variables bottom ranked. With this method, one
can choose a subset of variables with a given proportion of positively and negatively correlated variables.
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The criteria described in this section extend to the case of binary variables.Forman (2003)
presents in this issue an extensive study of such criteria for binary variables with applications in text
classification.

2.4 Information Theoretic Ranking Criteria

Several approaches to the variable selection problem using information theoretic criteria have been
proposed (as reviewed in this issue by Bekkerman et al., 2003, Dhillon et al., 2003, Forman, 2003,
Torkkola, 2003). Many rely on empirical estimates of the mutual information between each variable
and the target:

I (i) =
Z

xi

Z

y
p(xi ,y) log

p(xi ,y)
p(xi)p(y)

dxdy, (3)

wherep(xi) andp(y) are the probability densities ofxi andy, andp(xi ,y) is the joint density. The
criterionI (i) is a measure of dependency between the density of variablexi and the density of the
targety.

The difficulty is that the densitiesp(xi), p(y) and p(xi ,y) are all unknown and are hard to
estimate from data. The case of discrete or nominal variables is probably easiest because the integral
becomes a sum:

I(i) = ∑
xi

∑
y

P(X = xi ,Y = y) log
P(X = xi ,Y = y)

P(X = xi)P(Y = y)
. (4)

The probabilities are then estimated from frequency counts. For example, ina three-class
problem, if a variable takes 4 values,P(Y = y) represents the class prior probabilities (3 fre-
quency counts),P(X = xi) represents the distribution of the input variable (4 frequency counts),
andP(X = xi ,Y = y) is the probability of the joint observations (12 frequency counts). The estima-
tion obviously becomes harder with larger numbers of classes and variablevalues.

The case of continuous variables (and possibly continuous targets) is thehardest. One can
consider discretizing the variables or approximating their densities with a non-parametric method
such as Parzen windows (see, e.g., Torkkola, 2003). Using the normaldistribution to estimate
densities would bring us back to estimating the covariance betweenXi andY, thus giving us a
criterion similar to a correlation coefficient.

3 Small but Revealing Examples

We present a series of small examples that outline the usefulness and the limitations of variable
ranking techniques and present several situations in which the variable dependencies cannot be
ignored.

3.1 Can Presumably Redundant Variables Help Each Other?

One common criticism of variable ranking is that it leads to the selection of a redundant subset. The
same performance could possibly be achieved with a smaller subset of complementary variables.
Still, one may wonder whether adding presumably redundant variables canresult in a performance
gain.
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Figure 1:Information gain from presumably redundant variables. (a) A two class problem with
independently and identically distributed (i.i.d.) variables. Each class has a Gaussian distribution
with no covariance. (b) The same example after a 45 degree rotation showing that a combination
of the two variables yields a separation improvement by a factor

√
2. I.i.d. variables are not truly

redundant.

Consider the classification problem of Figure 1. For each class, we drewat randomm= 100
examples, each of the two variables being drawn independently accordingto a normal distribution of
standard deviation 1. The class centers are placed at coordinates (-1;-1) and (1; 1). Figure 1.a shows
the scatter plot in the two-dimensional space of the input variables. We also show on the same figure
histograms of the projections of the examples on the axes. To facilitate its reading, the scatter plot is
shown twice with an axis exchange. Figure 1.b shows the same scatter plots after a forty five degree
rotation. In this representation, the x-axis projection provides a better separation of the two classes:
the standard deviation of both classes is the same, but the distance between centers in projection is
now 2

√
2 instead of 2. Equivalently, if we rescale the x-axis by dividing by

√
2 to obtain a feature

that is the average of the two input variables, the distance between centersis still 2, but the within
class standard deviation is reduced by a factor

√
2. This is not so surprising, since by averagingn

i.i.d. random variables we will obtain a reduction of standard deviation by a factor of
√

n. Noise
reduction and consequently better class separation may be obtained by adding variables that
are presumably redundant. Variables that are independently and identically distributed are not
truly redundant.

3.2 How Does Correlation Impact Variable Redundancy?

Another notion of redundancy is correlation. In the previous example, in spite of the fact that the
examples are i.i.d. with respect to the class conditional distributions, the variables are correlated
because of the separation of the class center positions. One may wonder how variable redundancy
is affected by adding within-class variable correlation. In Figure 2, the class centers are positioned
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Figure 2:Intra-class covariance.In projection on the axes, the distributions of the two variables are
the same as in the previous example. (a) The class conditional distributions have a high covariance
in the direction of the line of the two class centers. There is no significant gainin separation by using
two variables instead of just one. (b) The class conditional distributions have a high covariance in
the direction perpendicular to the line of the two class centers. An important separation gain is
obtained by using two variables instead of one.

similarly as in the previous example at coordinates (-1; -1) and (1; 1) but we have added some
variable co-variance. We consider two cases:

In Figure 2.a, in the direction of the class center line, the standard deviation of the class condi-
tional distributions is

√
2, while in the perpendicular direction it is a small value (ε = 1/10). With

this construction, asε goes to zero, the input variables have the same separation power as in the
case of the example of Figure 1, with a standard deviation of the class distributions of one and a
distance of the class centers of 2. But the feature constructed as the sumof the input variables has
no better separation power: a standard deviation of

√
2 and a class center separation of 2

√
2 (a sim-

ple scaling that does not change the separation power). Therefore, inthe limit of perfect variable
correlation (zero variance in the direction perpendicular to the class center line), single variables
provide the same separation as the sum of the two variables.Perfectly correlated variables are
truly redundant in the sense that no additional information is gainedby adding them.

In contrast, in the example of Figure 2.b, the first principal direction of the covariance matrices
of the class conditional densities is perpendicular to the class center line. In this case, more is
gained by adding the two variables than in the example of Figure 1. One noticesthat in spite of their
great complementarity (in the sense that a perfect separation can be achieved in the two-dimensional
space spanned by the two variables), the two variables are (anti-)correlated. More anti-correlation
is obtained by making the class centers closer and increasing the ratio of the variances of the class
conditional distributions.Very high variable correlation (or anti-correlation) does not mean
absence of variable complementarity.

1164



AN INTRODUCTION TOVARIABLE AND FEATURE SELECTION

The examples of Figure 1 and 2 all have variables with the same distribution of examples (in
projection on the axis). Therefore, methods that score variables individually and independently of
each other are at loss to determine which combination of variables would givebest performance.

3.3 Can a Variable that is Useless by Itself be Useful with Others?

One concern about multivariate methods is that they are prone to overfitting.The problem is aggra-
vated when the number of variables to select from is large compared to the number of examples.
It is tempting to use a variable ranking method to filter out the least promising variables before us-
ing a multivariate method. Still one may wonder whether one could potentially lose some valuable
variables through that filtering process.

We constructed an example in Figure 3.a. In this example, the two class conditional distribu-
tions have identical covariance matrices, and the principal directions are oriented diagonally. The
class centers are separated on one axis, but not on the other. By itself one variable is “useless”.
Still, the two dimensional separation is better than the separation using the “useful” variable alone.
Therefore,a variable that is completely useless by itself can provide a significant performance
improvement when taken with others.

The next question is whether two variables that are useless by themselves can provide a good
separation when taken together. We constructed an example of such a case, inspired by the famous
XOR problem.7 In Figure 3.b, we drew examples for two classes using four Gaussians placed on
the corners of a square at coordinates (0; 0), (0; 1), (1; 0), and (1; 1). The class labels of these four
“clumps” are attributed according to the truth table of the logical XOR function:f(0; 0)=0, f(0; 1)=1,
f(1; 0)=1; f(1; 1)=0. We notice that the projections on the axes provideno class separation. Yet,
in the two dimensional space the classes can easily be separated (albeit notwith a linear decision
function).8 Two variables that are useless by themselves can be useful together.

7. The XOR problem is sometimes referred to as the two-bit parity problem and is generalizable to more than two
dimensions (n-bit parity problem). A related problem is the chessboard problem in which the two classes pave
the space with squares of uniformly distributed examples with alternating class labels. The latter problem is also
generalizable to the multi-dimensional case. Similar examples are used in several papers in this issue (Perkins et al.,
2003, Stoppiglia et al., 2003).

8. Incidentally, the two variables are also uncorrelated with one another.
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Figure 3: A variable useless by itself can be useful together with others.(a) One variable has
completely overlapping class conditional densities. Still, using it jointly with the other variable
improves class separability compared to using the other variable alone. (b) XOR-like or chessboard-
like problems. The classes consist of disjoint clumps such that in projection on the axes the class
conditional densities overlap perfectly. Therefore, individual variables have no separation power.
Still, taken together, the variables provide good class separability .

4 Variable Subset Selection

In the previous section, we presented examples that illustrate the usefulness of selecting subsets
of variables that together have good predictive power, as opposed to ranking variables according
to their individual predictive power. We now turn to this problem and outline the main directions
that have been taken to tackle it. They essentially divide into wrappers, filters, and embedded
methods. Wrappers utilize the learning machine of interest as a black box to score subsets of
variable according to their predictive power.Filters select subsets of variables as a pre-processing
step, independently of the chosen predictor.Embeddedmethods perform variable selection in the
process of training and are usually specific to given learning machines.

4.1 Wrappers and Embedded Methods

The wrapper methodology, recently popularized by Kohavi and John (1997), offers a simple and
powerful way to address the problem of variable selection, regardlessof the chosen learning ma-
chine. In fact, the learning machine is considered a perfect black box andthe method lends itself
to the use of off-the-shelf machine learning software packages. In its most general formulation, the
wrapper methodology consists in using the prediction performance of a given learning machine to
assess the relative usefulness of subsets of variables. In practice, one needs to define: (i) how to
search the space of all possible variable subsets; (ii) how to assess the prediction performance of
a learning machine to guide the search and halt it; and (iii) which predictor to use. An exhaustive
search can conceivably be performed, if the number of variables is nottoo large. But, the problem
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is known to be NP-hard (Amaldi and Kann, 1998) and the search becomesquickly computationally
intractable. A wide range of search strategies can be used, including best-first, branch-and-bound,
simulated annealing, genetic algorithms (see Kohavi and John, 1997, for areview). Performance
assessments are usually done using a validation set or by cross-validation(see Section 6). As il-
lustrated in this special issue, popular predictors include decision trees, näıve Bayes, least-square
linear predictors, and support vector machines.

Wrappers are often criticized because they seem to be a “brute force” method requiring massive
amounts of computation, but it is not necessarily so. Efficient search strategies may be devised. Us-
ing such strategies does not necessarily mean sacrificing prediction performance. In fact, it appears
to be the converse in some cases: coarse search strategies may alleviate theproblem of overfitting,
as illustrated for instance in this issue by the work of Reunanen (2003). Greedy search strategies
seem to be particularly computationally advantageous and robust against overfitting. They come in
two flavors: forward selectionandbackward elimination. In forward selection, variables are pro-
gressively incorporated into larger and larger subsets, whereas in backward elimination one starts
with the set of all variables and progressively eliminates the least promising ones.9 Both methods
yield nested subsetsof variables.

By using the learning machine as a black box, wrappers are remarkably universal and simple.
But embedded methods that incorporate variable selection as part of the training process may be
more efficient in several respects: they make better use of the available data by not needing to split
the training data into a training and validation set; they reach a solution faster byavoiding retraining
a predictor from scratch for every variable subset investigated. Embedded methods are not new:
decision trees such as CART, for instance, have a built-in mechanism to perform variable selection
(Breiman et al., 1984). The next two sections are devoted to two families of embedded methods
illustrated by algorithms published in this issue.

4.2 Nested Subset Methods

Some embedded methods guide their search by estimating changes in the objective function value
incurred by making moves in variable subset space. Combined with greedy search strategies (back-
ward elimination or forward selection) they yield nested subsets of variables.10

Let us calls the number of variables selected at a given algorithm step andJ(s) the value of
the objective function of the trained learning machine using such a variable subset. Predicting the
change in the objective function is obtained by:

1. Finite difference calculation: The difference betweenJ(s) andJ(s+1) or J(s−1) is com-
puted for the variables that are candidates for addition or removal.

2. Quadratic approximation of the cost function: This method was originally proposed to
prune weights in neural networks (LeCun et al., 1990). It can be usedfor backward elimi-
nation of variables, via the pruning of the input variable weightswi . A second order Taylor
expansion ofJ is made. At the optimum ofJ, the first-order term can be neglected, yield-

9. The name greedy comes from the fact that one never revisits former decisions to include (or exclude) variables in
light of new decisions.

10. The algorithms presented in this section and in the following generally benefit from variable normalization, except if
they have an internal normalization mechanism like the Gram-Schmidt orthogonalization procedure .
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ing for variablei to the variationDJi = (1/2) ∂2J
∂w2

i
(Dwi)

2. The change in weightDwi = wi

corresponds to removing variablei.

3. Sensitivity of the objective function calculation: The absolute value or the square of the
derivative ofJ with respect toxi (or with respect towi) is used.

Some training algorithms lend themselves to using finite differences (method 1) because exact
differences can be computed efficiently, without retraining new models foreach candidate variable.
Such is the case for the linear least-square model: The Gram-Schmidt orthogonolization procedure
permits the performance of forward variable selection by adding at each step the variable that most
decreases the mean-squared-error. Two papers in this issue are devoted to this technique (Stoppiglia
et al., 2003, Rivals and Personnaz, 2003). For other algorithms like kernel methods, approximations
of the difference can be computed efficiently. Kernel methods are learning machines of the form
f (x) = ∑m

k=1 αkK(x,xk), whereK is the kernel function, which measures the similarity betweenx
andxk (Schoelkopf and Smola, 2002). The variation inJ(s) is computed by keeping theαk values
constant. This procedure originally proposed for SVMs (Guyon et al., 2002) is used in this issue as
a baseline method (Rakotomamonjy, 2003, Weston et al., 2003).

The “optimum brain damage” (OBD) procedure (method 2) is mentioned in this issue in the
paper of Rivals and Personnaz (2003). The case of linear predictors f (x) = w ·x+b is particularly
simple. The authors of the OBD algorithm advocate usingDJi instead of the magnitude of the
weights|wi | as pruning criterion. However, for linear predictors trained with an objective function
J that is quadratic inwi these two criteria are equivalent. This is the case, for instance, for the linear
least square model usingJ = ∑m

k=1(w · xk + b− yk)
2 and for the linear SVM or optimum margin

classifier, which minimizesJ = (1/2)||w||2, under constraints (Vapnik, 1982). Interestingly, for
linear SVMs the finite difference method (method 1) and the sensitivity method (method 3) also
boil down to selecting the variable with smallest|wi | for elimination at each step (Rakotomamonjy,
2003).

The sensitivity of the objective function to changes inwi (method 3) is used to devise a forward
selection procedure in one paper presented in this issue (Perkins et al., 2003). Applications of this
procedure to a linear model with a cross-entropy objective function are presented. In the formulation
proposed, the criterion is the absolute value of∂J

∂wi
= ∑m

k=1
∂J
∂ρk

∂ρk
∂wi

, whereρk = yk f (xk). In the case
of the linear modelf (x) = w · x+b, the criterion has a simple geometrical interpretation: it is the
the dot product between the gradient of the objective function with respect to the margin values and
the vector[ ∂ρk

∂wi
= xk,iyk]k=1...m. For the cross-entropy loss function, we have:∂J

∂ρk
= 1

1+eρk .

An interesting variant of the sensitivity analysis method is obtained by replacing the objective
function by theleave-one-outcross-validation error. For some learning machines and some ob-
jective functions, approximate or exact analytical formulas of the leave-one-out error are known.
In this issue, the case of the linear least-square model (Rivals and Personnaz, 2003) and SVMs
(Rakotomamonjy, 2003) are treated. Approximations for non-linear least-squares have also been
computed elsewhere (Monari and Dreyfus, 2000). The proposal ofRakotomamonjy (2003) is to
train non-linear SVMs (Boser et al., 1992, Vapnik, 1998) with a regular training procedure and
select features with backward elimination like in RFE (Guyon et al., 2002). The variable ranking
criterion however is not computed using the sensitivity of the objective function J, but that of a
leave-one-out bound.
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4.3 Direct Objective Optimization

A lot of progress has been made in this issue to formalize the objective functionof variable selection
and find algorithms to optimize it. Generally, the objective function consists of twoterms that com-
pete with each other: (1) thegoodness-of-fit(to be maximized), and (2) thenumber of variables
(to be minimized). This approach bears similarity with two-part objective functions consisting of
a goodness-of-fit term and a regularization term, particularly when the effect of the regularization
term is to “shrink” parameter space. This correspondence is formally established in the paper of
Weston et al. (2003) for the particular case of classification with linear predictors f (x) = w ·x+b,
in the SVM framework (Boser et al., 1992, Vapnik, 1998). Shrinking regularizers of the type
||w||pp = (∑n

i=1wp
i )

1/p (`p-norm) are used. In the limit asp → 0, the`p-norm is just the number
of weights, i.e., the number of variables. Weston et al. proceed with showingthat the`0-norm
formulation of SVMs can be solved approximately with a simple modification of the vanilla SVM
algorithm:

1. Train a regular linear SVM (using̀1-norm or`2-norm regularization).

2. Re-scale the input variables by multiplying them by the absolute values of thecomponents of
the weight vectorw obtained.

3. Iterate the first 2 steps until convergence.

The method is reminiscent of backward elimination procedures based on the smallest|wi |. Variable
normalization is important for such a method to work properly.

Weston et al. note that, although their algorithm only approximately minimizes the`0-norm, in
practice it may generalize better than an algorithm that really did minimize the`0-norm, because the
latter would not provide sufficient regularization (a lot of variance remains because the optimization
problem has multiple solutions). The need for additional regularization is alsostressed in the paper
of Perkins et al. (2003). The authors use a three-part objective function that includes goodness-
of-fit, a regularization term (`1-norm or `2-norm), and a penalty for large numbers of variables
(`0-norm). The authors propose a computationally efficient forward selection method to optimize
such objective.

Another paper in the issue, by Bi et al. (2003), uses`1-norm SVMs, without iterative multi-
plicative updates. The authors find that, for their application, the`1-norm minimization suffices to
drive enough weights to zero. This approach was also taken in the context of least-square regression
by other authors (Tibshirani, 1994). The number of variables can be further reduced by backward
elimination.

To our knowledge, no algorithm has been proposed to directly minimize the number of vari-
ables for non-linear predictors. Instead, several authors have substituted for the problem of variable
selection that of variable scaling (Jebara and Jaakkola, 2000, Weston et al., 2000, Grandvalet and
Canu, 2002). The variable scaling factors are “hyper-parameters” adjusted by model selection. The
scaling factors obtained are used to assess variable relevance. A variant of the method consists
of adjusting the scaling factors by gradient descent on a bound of the leave-one-out error (Weston
et al., 2000). This method is used as baseline method in the paper of Weston etal. (2003) in this
issue.
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4.4 Filters for Subset Selection

Several justifications for the use of filters for subset selection have been put forward in this special
issue and elsewhere. It is argued that, compared to wrappers, filters are faster. Still, recently pro-
posed efficient embedded methods are competitive in that respect. Another argument is that some
filters (e.g. those based on mutual information criteria) provide a generic selection of variables, not
tuned for/by a given learning machine. Another compelling justification is that filtering can be used
as a preprocessing step to reduce space dimensionality and overcome overfitting.

In that respect, it seems reasonable to use a wrapper (or embedded method) with a linear pre-
dictor as a filter and then train a more complexnon-linearpredictor on the resulting variables. An
example of this approach is found in the paper of Bi et al. (2003): a linear`1-norm SVM is used for
variable selection, but a non-linear`1-norm SVM is used for prediction. The complexity of linear
filters can be ramped up by adding to the selection process products of input variables (monomi-
als of a polynomial) and retaining the variables that are part of any selectedmonomial. Another
predictor, e.g., a neural network, is eventually substituted to the polynomial toperform predictions
using the selected variables (Rivals and Personnaz, 2003, Stoppiglia etal., 2003). In some cases
however, one may on the contrary want to reduce the complexity of linear filters to overcome over-
fitting problems. When the number of examples is small compared to the number of variables (in the
case of microarray data for instance) one may need to resort to selecting variables with correlation
coefficients (see Section 2.2).

Information theoretic filtering methods such as Markov blanket11 algorithms (Koller and Sa-
hami, 1996) constitute another broad family. The justification for classificationproblems is that the
measure of mutual information does not rely on any prediction process, but provides a bound on the
error rate using any prediction scheme for the given distribution. We do not have any illustration of
such methods in this issue for the problem of variable subset selection. We refer the interested reader
to Koller and Sahami (1996) and references therein. However, the useof mutual information criteria
for individual variable ranking was covered in Section 2 and application tofeature construction and
selection are illustrated in Section 5.

5 Feature Construction and Space Dimensionality Reduction

In some applications, reducing the dimensionality of the data by selecting a subset of the original
variables may be advantageous for reasons including the expense of making, storing and processing
measurements. If these considerations are not of concern, other meansof space dimensionality
reduction should also be considered.

The art of machine learning starts with the design of appropriate data representations. Better
performance is often achieved using features derived from the original input. Building a feature
representation is an opportunity to incorporate domain knowledge into the dataand can be very ap-
plication specific. Nonetheless, there are a number of generic feature construction methods, includ-
ing: clustering; basic linear transforms of the input variables (PCA/SVD, LDA); more sophisticated
linear transforms like spectral transforms (Fourier, Hadamard), wavelet transforms or convolutions
of kernels; and applying simple functions to subsets of variables, like products to create monomials.

11. The Markov blanket of a given variablexi is a set of variables not includingxi that renderxi “unnecessary”. Once
a Markov blanket is found,xi can safely be eliminated. Furthermore, in a backward elimination procedure, it will
remain unnecessary at later stages.
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